

ALGORITHMS TO FIND CLIQUE-TO-VERTEX DETOUR DISTANCE IN GRAPHS

I. Keerthi Asir ${ }^{1}$, S. Athisayanathan ${ }^{2}$ and A. Antonysamy S.J. ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, India.
E-mail: asirsxc@gmail.com
E-mail: athisxc@gmail.com
E-mail: antonysamy.fr@gmail.com
Received : May 2017 Accepted : August 2017

Abstract

Let C be a clique and j a vertex in a connected graph G. A clique-to-vertex $C-j$ path P is an $i-j$ path, where i is a vertex in C such that P contains no vertices of C other than i. The clique-to-vertex detour distance, $D(C, j)$ is the length of a longest $C-j$ path in G. The clique-to-vertex detour eccentricity $e_{D 2}(C)$ of a clique C in G is the maximum clique-to-vertex detour distance from C to a vertex $i \in V$ in G. The clique-to-vertex detour radius R_{2} of G is the minimum clique-to-vertex detour eccentricity among the cliques of ζ in G, where ζ is the set of all cliques in G, while the clique-to-vertex detour diameter D_{2} of G is the maximum clique-to-vertex detour eccentricity among the cliques of ζ in G. The clique-to-vertex detour center of G is the set of all cliques having minimum clique-to-vertex detour eccentricity of G and the clique-to-vertex detour periphery of G is the set of all cliques having maximum clique-to-vertex detour eccentricity of G. It is given that the algorithms to find the clique-tovertex detour distance $D(C, j)$, the clique-to-vertex detour eccentricity $e_{D 2}(C)$, the clique-to-vertex detour radius R_{2}, the clique-to-vertex detour diameter D_{2}, the clique-to-vertex detour center $C_{D 2}(G)$, and the clique-to-vertex detour periphery $P_{D 2}(G)$ of a graph G using BC representation.

Keywords: Binary count, clique-to-vertex detour distance, clique-to-vertex detour center, clique-to-vertex detour periphery.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected simple graph. For basic graph theoretic terminologies, we refer [3, 4]. If $X \subseteq V$, then $\langle X\rangle$ is the subgraph induced by X. A clique C of a graph G is a maximal complete subgraph, denoted by its vertices. In 1964, Hakimi [5] considered the facility location problems as vertex-to-vertex distance in graphs. For any two vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic in G. Also they defined the eccentricity $e(v)$ of a vertex v, the radius r, diameter d, the center $C(G)$, and the periphery $P(G)$. The distance matrix $D(G)=\left[d_{i j}\right]$ of G is a $n \times n$ matrix, where n is the order of G, and $\left[d_{i j}\right]=d\left(v_{i}, v_{j}\right)$, the distance between v_{i} and v_{j} in $G(1 \leq i \leq n, 1 \leq j \leq n)$.

In 2005, Chartrand, Escuadro and Zhang [2] introduced and studied the concepts of detour distance in graphs. For any two vertices u and v in a connected graph G, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called a $u-v$ detour in G. Also they defined the detour eccentricity $e_{D}(v)$ of a vertex v, the detour radius R, detour diameter D, the detour center $C_{D}(G)$, and the detour periphery $P_{D}(G)$. The detour distance matrix $D(G)=\left[D_{i j}\right]$ of G is a $n \times n$ matrix, where n is the order of G, and $\left[D_{i j}\right]=D\left(v_{i}, v_{j}\right)$, the detour distance between v_{i} and v_{j} in $G(1 \leq i \leq n, 1 \leq j \leq n)$.

Fig 1.1: G

Ashok kumar, Athisayanathan and Antonysamy [1] introduced the algorithms to find clique-to-vertex structures in a graph using BC-representation. Correspondingly they defined a method to represent a subset of a set which is called binary count (or BC) representation. For example, the graph G given in Fig. 1.1, the set of all cliques in G is $\zeta=\{\{1,2\},\{1,3\},\{2,4,5\},\{3,4\}$, $\{4,6\}\}$ and the set ζ of all cliques in G in BC representation is $\zeta=\{(110000),(101000),(010110)$, $(001100),(000101)\}$. Note that if C is the clique $\{3,4\}$, then the $B C$ representation of C is $B C(C)=(001100)$, and further $B C(C(1))=B C(C(2))=B C(C(5))=B C(C(6))=0$, and $B C(C(3))=B C(C(4))=1$. That is, $B C(C(i))(1 \leq i \leq n)$ denotes the integer 1 or 0 in the $i^{t h}$ place in the BC representation of the clique C in the graph G. For our convenience, we define if $C=(010110)$ then $|C|=0+1+0+1+1+0=3$. Also the detour distance matrix $D(G)$ of G is

$$
D(G)=\left[\begin{array}{llllll}
0 & 4 & 4 & 3 & 4 & 4 \\
4 & 0 & 3 & 3 & 4 & 4 \\
4 & 3 & 0 & 4 & 4 & 5 \\
3 & 3 & 4 & 0 & 4 & 1 \\
4 & 4 & 4 & 4 & 0 & 5 \\
4 & 4 & 5 & 1 & 5 & 0
\end{array}\right]
$$

Keerthi Asir and Athisayanathan [6] introduced and studied the concepts of clique-to-vertex detour distance in graphs. In this paper we introduce and study algorithms to find the clique-to-vertex detour distance $D(C, j)$, the clique-to-vertex detour eccentricity $e_{D 2}(C)$, the clique-to-vertex detour radius R_{2}, the clique-to-vertex detour diameter D_{2}, the clique-to-vertex detour center $C_{D 2}(G)$ and the clique-to-vertex detour periphery $P_{D 2}(G)$ of a graph G using BC representation. Throughout this paper, G denotes a connected graph with at least two vertices.

2. Clique-to-Vertex Detour Distance

First, we introduce an algorithm to find the clique-to-vertex detour distance $D(C, j)$ between a clique C and a vertex j in a graph G using BC representation.

Definition 2.1. Let C be a clique and j a vertex in a connected graph G. A clique-to-vertex $C-j$ path P is a $i-j$ path, where i is a vertex in C such that P contains no vertices of C other than i. The clique-to-vertex detour distance $D(C, j)$ is the length of a longest $C-j$ path in G.

In particular it may be a vertex, say $x \in C$ such that the $x-j$ path is unique and contains no vertices of C other than x.

Algorithm 2.2. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\{C$: C is a clique in $B C$ representation $\}$.
(1) Let $D(G)=\left[D_{i j}\right]$ be the detour distance matrix of G.
(2) Let $C \in \zeta$
(3) Let $j \in V$
(4) If $B C(C(j))=1$ then $D(C, j)=0$; goto step (10)
(5) For $i=1$ to n
(6) If $B C(C(i))=0$ then $D(i, j)=0$
(7) If $B C(C(i))=1$ then $D(i, j)=D_{i j}$
(8) Next i
(9) Find $D(C, j)$

- $D(C, j)=\max \{D(i, j): 1 \leq i \leq n, i \neq x\}-|C|+1$
- $D(C, j)=D(x, j)$
(10) Return $D(C, j)$
(11) Stop

Theorem 2.3. For every clique C and a vertex j in a connected graph G, the Algorithm 2.2 finds the clique-to-vertex detour distance $D(C, j)$.

Proof. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}, \zeta=\{C: C$ is a clique in BC representation $\}$ and $D(G)$ the detour distance matrix of G. Let $C \in \zeta$ and $j \in V$. We consider the following two cases:
Case 1. If $j \in C$ then $B C(C(j))=1$ so that the clique-to-vertex detour distance $D(C, j)=0$.
Case 2. If $j \notin C$ then $B C(C(j))=0$ so that the steps (5) to (8) of the Algorithm 2.2 finds the detour distance $D(i, j)$ from the vertex $i(1 \leq i \leq n)$ to the vertices j as follows.
Subcase 1 of Case 2. If $i \notin C$ then $B C(C(i))=0(1 \leq i \leq n)$ so that the detour distance $D(i, j)=0$.
Subcase 2 of Case 2. If $i \in C$ then $B C(C(i))=1(1 \leq i \leq n)$ so that the detour distance $D(i, j)=D_{i j}$.
Then step (9) of the Algorithm 2.2 finds the clique-to-vertex detour distance $D(C, j)$ by either $D(C, j)=\max \{D(i, j): 1 \leq i \leq n, i \neq x\}-|C|+1$ or $D(C, j)=D(x, j)$, where x is a vertex in C such that the $x-j$ path is unique and contains no vertices of C other than x.

In the Algorithm 2.2, the step (4) is executed in $O(1)$ time, the steps (5) to (8) are executed in $O(n)$ time, and the step (9) is executed in $O(n)$ time, we have the following theorem.

Theorem 2.4. The clique-to-vertex detour distance $D(C, j)$ between the clique C and the vertex i in a graph G can be found in $O(n)$ time.

Example 2.5. Consider the graph G given in Fig. 1.1, the set ζ of all cliques in G in $B C$ representation is $\zeta=\{(110000),(101000),(010110),(001100),(000101)\}$. Let $D(G)$ be the detour distance matrix of G. Now using Algorithm 2.2, let us find the clique-to-vertex detour distance $D(C, j)$ between the clique $C=\{1,2\}$ and the vertex $j=1$. Clearly $B C(C)=$ (110000). Since $B C(C(j))=1$, the Algorithm 2.2 returns clique-to-vertex detour distance $D(C, j)=0$. Again using the Algorithm 2.2, let us find the clique-to-vertex detour distance $D(C, j)$ between the clique $C=\{1,2\}$ and the vertex $j=6$. Sine $B C(C(j))=0$ and there is no vertex x in C such that the $x-j$ path is unique and contains no vertices of C other than x. Then the Algorithm 2.2 finds the clique-to-vertex detour distance $D(C, j)=\max \{D(i, j)$: $1 \leq i \leq n, i \neq x\}-|C|+1$. For the vertices $i=3,4,5,6, B C(C(i))=0$ and also for the vertices $i=1,2, B C(C(i))=1$ so that $D(1, j)=D_{1 j}=4$ and $D(2, j)=D_{2 j}=4$. Now the Algorithm 2.2 returns the clique-to-vertex detour distance $D(C, j)=\max \{D(i, j): 1 \leq i \leq$ $n, i \neq x\}-|C|+1=\max \{D(1, j), D(2, j), D(3, j), D(4, j), D(5, j), D(6, j)\}-|C|+1=$ $\max \{4,4,0,0,0,0\}-|C|+1=4-2+1=3$. Also for the clique $C=\{2,4,5\}$ and the vertex $j=6, B C(C(j))=0$. Here there is a vertex 4 in C such that the $4-j$ path is unique and contains no vertices of C other than 4 . Then the Algorithm 2.2 finds the clique-to-vertex detour distance $D(C, j)=D(4, j)=D_{4 j}=1$.

3. Clique-To-Vertex Detour Eccentricity

Next, we introduce an algorithm to find the clique-to-vertex detour eccentricity $e_{D 2}(C)$ of a clique C in a graph G using BC representation.

Definition 3.1. The clique-to-vertex detour eccentricity $e_{D 2}(C)$ of a clique C in a connected graph G is defined as $e_{D 2}(C)=\max \{D(C, j): j \in V\}$.

```
\(C\) is a clique in \(B C\) representation \(\}\).
    (1) Let \(C \in \zeta\).
    (2) Let \(j \in V\)
    (3) For \(j=1\) to \(n\)
    (4) Find \(D(C, j)\), (By Calling Algorithm 2.2)
    (5) Next \(j\)
    (6) Find \(e_{D 2}(C)=\max \{D(C, j): 1 \leq j \leq n\}\)
    (7) Return \(e_{D 2}(C)\)
    (8) Stop
```

Algorithm 3.2. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\{C$:

Theorem 3.3. For every clique C and the set of all vertices V in a connected graph G, the Algorithm 3.2 finds the clique-to-vertex detour eccentricity $e_{D 2}(C)$.

Proof. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ the set of all cliques in BC representation in G. Let $i \in V$. Then the step (4) of the Algorithm 3.2 finds the clique-to-vertex detour distance $D(C, j)$ between the clique C and every vertex $j(1 \leq j \leq n)$ in G, and the step (6) of the Algorithm 3.2 finds the clique-to-vertex detour eccentricity $e_{D 2}(C)$ by $e_{D 2}(C)=\max \{D(C, j): 1 \leq j \leq n\}$.

In the Algorithm 3.2, the step (4) is executed in $O(n)$ time, the steps (3) to (5) are executed in $O\left(n^{2}\right)$ time, and the step (6) is executed in $O(n)$ time, we have the following theorem.

Theorem 3.4. The clique-to-vertex detour eccentricity $e_{D 2}(C)$ of a clique C in a graph G can be found in $O\left(n^{2}\right)$ time.

Example 3.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in $B C$ representation is $\zeta=\{(110000),(101000),(010110),(001100),(000101)\}$. Let $C=(110000) \in \zeta$. Now using Algorithm 3.2, we find the clique-to-vertex detour eccentricity $e_{D 2}(C)$. By calling the algorithm $2.2 n$ times, the step (4) of Algorithm 3.2 finds the clique-to-vertex detour distances $D(C, 1)=0, D(C, 2)=0, D(C, 3)=3, D(C, 4)=2, D(C, 5)=3$ and $D(C, 6)=3$. Finally the step (6) of Algorithm 3.2 finds the clique-to-vertex detour eccentricity $e_{D 2}(C)=\max \{0,0,3,2,3,3\}=3$.

4. Clique-To-Vertex Detour Radius

Next, we introduce an algorithm to find the clique-to-vertex detour radius R_{2} of a graph G using BC representation.

Definition 4.1. The clique-to-vertex detour radius R_{2} of a connected graph G is defined as, $R_{2}=\operatorname{rad}_{D 2}(G)=\min \left\{e_{D 2}(C): C \in \zeta\right\}$.

Algorithm 4.2. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\{C$: C is a clique in $B C$ representation $\}$.
(1) Let $\zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$
(2) For $i=1$ to m
(3) Find $e_{D 2}\left(C_{i}\right)$, (By Calling Algorithm 3.2)
(4) Next i
(5) Find $R_{2}=\min \left\{e_{D 2}\left(C_{i}\right): 1 \leq i \leq m\right\}$
(6) Return R_{2}
(7) Stop

Theorem 4.3. For a connected graph G, the Algorithm 4.2 finds the clique-to-vertex detour radius R_{2} of G.

Proof. Let G be a non-trivial connected graph with $\zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ and $C \in \zeta$. Then the steps (2) to (4) of the Algorithm 4.2 finds the clique-to-vertex detour eccentricity $e_{D 2}\left(C_{i}\right)$ for every clique C_{i}, and the step (5) of the Algorithm 4.2 finds the clique-to-vertex detour radius R_{2} of G by $R_{2}=\min \left\{e_{D 2}\left(C_{i}\right): 1 \leq i \leq m\right\}$.

In the Algorithm 4.2, the step (3) is executed in $O\left(n^{2}\right)$ time, the steps (2) to (4) are executed in $O\left(m n^{2}\right)$ time, and the step (5) is executed in $O(m)$ time, we have the following theorem.

Theorem 4.4. The clique-to-vertex detour radius R_{2} of G can be found in $O\left(m n^{2}\right)$ time.
Example 4.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in $B C$ representation is $\zeta=\{(110000),(101000),(010110),(001100),(000101)\}$. Now using Algorithm 4.2, we find the clique-to-vertex detour radius R_{2} of G. By calling the algorithm 3.2 m times, the step (3) of Algorithm 4.2 finds the clique-to-vertex detour eccentricities $e_{D 2}\left(C_{1}\right)=3$, $e_{D 2}\left(C_{2}\right)=4, e_{D 2}\left(C_{3}\right)=2, e_{D 2}\left(C_{4}\right)=3$ and $e_{D 2}\left(C_{5}\right)=4$. Finally step (5) of Algorithm 4.2 finds the clique-to-vertex detour radius $R_{2}=\min \{3,4,2,3,4\}=2$.

5. Clique-To-Vertex Detour Center

Next, we introduce an algorithm to find the clique-to-vertex detour center $C_{D 2}(G)$ of a graph G using BC representation.

Definition 5.1. Let G be a connected graph. A clique C in G is called a clique-to-vertex detour central clique if $e_{D 2}(C)=R_{2}$ and the clique-to-vertex detour center $C_{D 2}(G)$ of G is defined as, $C_{D 2}(G)=$ Cen $_{D 2}(G)=\left\langle\left\{C \in \zeta: e_{D 2}(C)=R_{2}\right\}\right\rangle$.

Algorithm 5.2. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\{C$: C is a clique in $B C$ representation $\}$.
(1) $\operatorname{Let} \zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$.
(2) Let $C_{D 2}(G)=\langle\phi\rangle$
(3) For $i=1$ to m
(4) Find $e_{D 2}\left(C_{i}\right)$, (By Calling Algorithm 3.2)
(5) Next i
(6) Find R_{2}, (By Calling Algorithm 4.2)
(7) For $i=1$ to m
(8) If $e_{D 2}\left(C_{i}\right)=R_{2}$ then $C_{D 2}(G)=C_{D 2}(G) \cup\left\{C_{i}\right\}$
(9) Next i
(10) Stop

Theorem 5.3. For a connected graph G, the Algorithm 5.2 finds the clique-to-vertex detour center $C_{D 2}$ of G.

Proof. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ the set of all cliques in BC representation in G. Then the steps (3) to (5) of the Algorithm 5.2 finds the clique-to-vertex detour eccentricity $e_{D 2}\left(C_{i}\right)$ for every clique $C_{i} \in \zeta(1 \leq i \leq m)$, the step (6) of the Algorithm 5.2 finds the clique-to-vertex detour radius R_{2} of G by $R_{2}=$ $\min \left\{e_{D 2}\left(C_{i}\right): 1 \leq i \leq m\right\}$, and the steps (7) to (9) of the Algorithm 5.2 finds the clique-tovertex detour center $C_{D 2}(G)$ of G by $C_{D 2}(G)=C e n_{D 2}(G)=\left\langle\left\{C_{i} \in \zeta: e_{D 2}\left(C_{i}\right)=R_{2}\right\}\right\rangle$.

In the Algorithm 5.2, the step (4) is executed in $O\left(n^{2}\right)$ time, the steps (3) to (5) are executed in $O\left(m n^{2}\right)$ time, the step (6) is executed in $O(m)$ time, and the steps (7) to (9) are executed in $O(m)$ time, we have the following theorem.

Theorem 5.4. The clique-to-vertex detour center $C_{D 2}(G)$ of G can be found in $O\left(m n^{2}\right)$ time.
Example 5.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in $B C$ representation is $\zeta=\{(110000),(101000),(010110),(001100),(000101)\}$. Now using Algorithm 5.2, we find the clique-to-vertex detour center $C_{D 2}(G)$. By calling the algorithm 3.2 m times, the step (4) of Algorithm 5.2 finds the clique-to-vertex detour eccentricities $e_{D 2}\left(C_{1}\right)=3$, $e_{D 2}\left(C_{2}\right)=4, e_{D 2}\left(C_{3}\right)=2$, $e_{D 2}\left(C_{4}\right)=3$ and $e_{D 2}\left(C_{5}\right)=4$. By Calling Algorithm 4.2 m times, step (6) of Algorithm 5.2 finds the clique-to-vertex detour radius $R_{2}=\min \{3,4,2,3,4\}=$ 2. Finally step (8) of Algorithm 5.2 finds the clique-to-vertex detour center
$C_{D 2}(G)=\left\langle\left\{C \in \zeta: e_{D 2}(C)=R_{2}\right\}\right\rangle=\left\langle\left\{C_{3}\right\}\right\rangle$.

6. Clique-To-Vertex Detour Diameter

Next, we introduce an algorithm to find the clique-to-vertex detour diameter D_{2} of a graph G using BC representation.

Definition 6.1. The clique-to-vertex detour diameter D_{2} of a connected graph G is defined as, $D_{2}=\operatorname{diam}_{D 2}(G)=\max \left\{e_{D 2}(C): C \in \zeta\right\}$.

Algorithm 6.2. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\{C$: C is a clique in $B C$ representation $\}$.
(1) $\operatorname{Let} \zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$
(2) For $i=1$ to m
(3) Find $e_{D 2}\left(C_{i}\right)$, (By Calling Algorithm 3.2)
(4) Next i
(5) Find $D_{2}=\max \left\{e_{D 2}\left(C_{i}\right): 1 \leq i \leq m\right\}$
(6) Return R_{2}
(7) Stop

Theorem 6.3. For a connected graph G, the Algorithm 6.2 finds the clique-to-vertex detour diameter D_{2} of G.

Proof. Let G be a non-trivial connected graph with $\zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ and $C \in \zeta$. Then the steps (2) to (4) of the Algorithm 6.2 finds the clique-to-vertex detour eccentricity $e_{D 2}\left(C_{i}\right)$ for every clique C_{i}, and the step (5) of the Algorithm 6.2 finds the clique-to-vertex detour diameter D_{2} of G by $D_{2}=\max \left\{e_{D 2}\left(C_{i}\right): 1 \leq i \leq m\right\}$.

In the Algorithm 6.2, the step (3) is executed in $O\left(n^{2}\right)$ time, the steps (2) to (4) are executed in $O\left(m n^{2}\right)$ time, and the step (5) is executed in $O(m)$ time, we have the following theorem.

Theorem 6.4. The clique-to-vertex detour diameter D_{2} of G can be found in $O\left(m n^{2}\right)$ time.
Example 6.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in $B C$ representation is $\zeta=\{(110000),(101000),(010110),(001100),(000101)\}$. Now using Algorithm 6.2, we find the clique-to-vertex detour diameter D_{2} of G. By calling the algorithm 3.2 m times, the step (3) of Algorithm 6.2 finds the clique-to-vertex detour eccentricities $e_{D 2}\left(C_{1}\right)=3$, $e_{D 2}\left(C_{2}\right)=4, e_{D 2}\left(C_{3}\right)=2$, $e_{D 2}\left(C_{4}\right)=3$ and $e_{D 2}\left(C_{5}\right)=4$. Finally step (5) of Algorithm 6.2 finds the clique-to-vertex detour diameter $D_{2}=\max \{3,4,2,3,4\}=4$.

7. Clique-To-Vertex Detour Periphery

Next, we introduce an algorithm to find the clique-to-vertex detour periphery $P_{D 2}(G)$ of a graph G using BC representation.

Definition 7.1. Let G be a connected graph. A clique C in G is called a clique-to-vertex detour peripheral clique if $e_{D 2}(C)=D_{2}$ and the clique-to-vertex detour periphery $P_{D 2}(G)$ of G is defined as, $P_{D 2}(G)=\operatorname{Per}_{D 2}(G)=\left\langle\left\{C \in \zeta: e_{D 2}(C)=D_{2}\right\}\right\rangle$.

Algorithm 7.2. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\{C$: C is a clique in $B C$ representation $\}$.
(1) Let $\zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$.
(2) Let $P_{D 2}(G)=\langle\phi\rangle$
(3) For $i=1$ to m
(4) Find $e_{D 2}\left(C_{i}\right)$, (By Calling Algorithm 3.2)
(5) Next i
(6) Find D_{2}, (By Calling Algorithm 6.2)
(7) For $i=1$ to m
(8) If $e_{D 2}\left(C_{i}\right)=D_{2}$ then $P_{D 2}(G)=P_{D 2}(G) \cup\left\{C_{i}\right\}$
(9) Next i
(10) Stop

Theorem 7.3. For a connected graph G, the Algorithm 7.2 finds the clique-to-vertex detour periphery $P_{D 2}(G)$ of G.

Proof. Let G be a non-trivial connected graph with $V=\{1,2,3, \ldots, n\}$ and $\zeta=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ the set of all cliques in BC representation in G. Then the steps (3) to (5) of the Algorithm 7.2 finds the clique-to-vertex detour eccentricity $e_{D 2}\left(C_{i}\right)$ for every clique $C_{i} \in \zeta(1 \leq i \leq m)$, the step (6) of the Algorithm 7.2 finds the clique-to-vertex detour diameter D_{2} of G by $D_{2}=$ $\max \left\{e_{D 2}\left(C_{i}\right): 1 \leq i \leq m\right\}$, and the steps (7) to (9) of the Algorithm 7.2 finds the clique-tovertex detour periphery $P_{D 2}(G)$ of G by $P_{D 2}(G)=\operatorname{Per}_{D 2}(G)=\left\langle\left\{C_{i} \in \zeta: e_{D 2}\left(C_{i}\right)=D_{2}\right\}\right\rangle$.

In the Algorithm 7.2, the step (4) is executed in $O\left(n^{2}\right)$ time, the steps (3) to (5) are executed in $O\left(m n^{2}\right)$ time, the step (6) is executed in $O(m)$ time, and the steps (7) to (9) are executed in $O(m)$ time, we have the following theorem.

Theorem 7.4. The clique-to-vertex detour periphery $P_{D 2}(G)$ of G can be found in $O\left(m n^{2}\right)$ time.

Example 7.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in BC representation is $\zeta=\{(110000),(101000),(010110),(001100),(000101)\}$. Now using Algorithm 5.2, we find the clique-to-vertex detour periphery $P_{D 2}(G)$. By calling the algorithm 3.2 m times, the step (4) of Algorithm 7.2 finds the clique-to-vertex detour eccentricities $e_{D 2}\left(C_{1}\right)=$ 3 , $e_{D 2}\left(C_{2}\right)=4, e_{D 2}\left(C_{3}\right)=2, e_{D 2}\left(C_{4}\right)=3$ and $e_{D 2}\left(C_{5}\right)=4$. By calling the algorithm 6.2 m times, step (6) of Algorithm 7.2 finds the clique-to-vertex detour diameter $D_{2}=$ $\max \{3,4,2,3,4\}=4$. Finally step (8) of Algorithm 7.2 finds the clique-to-vertex detour periphery $P_{D 2}(G)=\left\langle\left\{C \in \zeta: e_{D 2}(C)=D_{2}\right\}\right\rangle=\left\langle\left\{C_{2}, C_{5}\right\}\right\rangle$.

Acknowledgments

The author wish to thank God.

REFERENCES

[1] A. Ashok Kumar, S. Athisayanathan and A. Antonysamy, Algorithms to find Clique-To-Vertex Structures in a Graph using BC-representation, Int. J. Research in Computer Applications and Robotics, 1, (2013), 1-5.
[2] G. Chartrand, H. Escuadro, and P. Zhang, Detour Distance in Graphs, J.Combin.Math.Combin.Comput., 53, (2005), 75-94.
[3] G. Chartrand and Ortrud R. Oellermann, Applied and Algorithmic Graph Theory, McGrraw-Hill International Editions (1993).
[4] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi, (2006).
[5] S. L. Hakimi, Optimum location of switching centers and absolute centers and medians of a graph, Operations Research, 12, (1964).
[6] I. Keerthi Asir and S. Athisayanathan, Clique-To-Vertex Detour Distance in Graphs, Journal of Prime Research In Mathematics, 11, (2015), 42-54.

